Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present an international comparative analysis of simulated 3D tsunami debris hazards, applying three state-of-the-art numerical methods: the Material Point Method (MPM, ClaymoreUW, multi-GPU), Smoothed Particle Hydrodynamics (SPH, DualSPHysics, GPU), and Eulerian grid-based computational fluid dynamics (Simcenter STAR-CCM+, multi-CPU/GPU). Three teams, two from the United States and one from Germany, apply their unique expertise to shed light on the state of advanced tsunami debris modeling in both open source and professional software. A mutually accepted and meaningful benchmark is set as 1:40 Froude scale model experiments of shipping containers mobilized into and amidst a port setting with simplified and generic structures, closely related to the seminal Tohoku 2011 tsunami case histories which majorly affected seaports. A sophisticated wave flume at Waseda University in Tokyo, Japan, hosted the experiments as reported by Goseberget al. (2016b). Across dozens of trials, an elongated vacuum-chamber wave surges and spills over a generic harbor apron, mobilizing 3–6 hollow debris-modeling sea containers-, in 1–2 vertical layers against friction. One to two rows of 5 square obstacles are placed upstream or downstream of the debris, with widths and gaps of 0.66x and 2.2x of debris length, respectively. The work reports and compares results on the long wave generation from a vacuum-controlled tsunami wave maker, longitudinal displacement of debris forward and back, lateral spreading angle of debris, interactions of stacked debris, and impact forces measured with debris accelerometers and/or obstacle load-cells. Each team writes a foreword on their digital twin model, which are all open-sourced. Then, preliminary statistical analysis contrasts simulations originating off different numerical methods, and simulations with experiments. Afterward, team’s give value propositions for their numerical tool. Finally, a transparent cross-interrogation of results highlights the strengths of each respective method.more » « lessFree, publicly-accessible full text available December 9, 2025
-
In current practice, debris-field impact loading for near-water structures is usually derived from (1) infrequent case histories, (2) simplified analytical equations, and (3) practitioner experience. Via advanced numerical simulation of tsunami-driven debris-field impacts at multiple scales and conditions, we are now forging a modeling approach to address a wider range of scenarios. Broadened cases are characterized, with chaotic natures expressed stochastically. The analytical tools have the potential to strengthen the basis of ASCE 7 guidelines and to encompass events not yet described in the code.more » « less
-
Rodriguez, Julio A. (Ed.)Design code-based “life-safety” requirements for structural earthquake and tsunami design offer reasonable guidelines to construct buildings that will remain standing during a tsunami or seismic event. Much less consideration has been given to assessing structural resilience during sequential earthquake and tsunami multi-hazard events. Such events present a series of extreme loading scenarios, where damage sustained during the earthquake influences structural performance during the subsequent inundation. Similar difficulties exist with respect to damage sustained during tropical events, as wind and fluid loading may vary with structural response or accumulated damage. To help ensure critical structures meet a “life-safety” level of performance during such multi-hazard events, analysis software capable of simulating simultaneous structural and fluid dynamics must be developed. To address this gap in understanding of non-linear fluid-structure-interaction (FSI), an open-source tool (FOAMySees) was developed for simulation of tsunami and wave impact analysis of post-earthquake non-linear structural response of buildings. The tool is comprised of the Open-source Field Operation And Manipulation software package and OpenSeesPy, a Python 3 interpreter of OpenSees. The programs are coupledviapreCICE, a coupling library for partitioned multi-physics simulation. FOAMySees has been written to work in a Linux OS environment with HPC clusters in mind. The FOAMySees program offers a partitioned conventional-serial-staggered coupling scheme, with optional implicit iteration techniques to ensure a strongly-coupled two-way FSI solution. While FOAMySees was developed specifically for tsunami-resilience analysis, it may be utilized for other FSI applications with ease. With this coupled Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) program, tsunami and earthquake simulations may be run sequentially or simultaneously, allowing for the evaluation of non-linear structural response to multi-hazard excitation.more » « less
An official website of the United States government
